Part Number Hot Search : 
LT1260IN DTA115T LT1260IN 1206H 6481P ZD04V7 1A66B UPD65882
Product Description
Full Text Search
 

To Download UMF9N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  UMF9N transistors 1/5 power management (dual transistors) UMF9N 2sc5585 and 2sk3019 are housed independently in a umt package. ! ! ! ! application power management circuit ! ! ! ! features 1) power switching circuit in a single package. 2) mounting cost and area can be cut in half. ! ! ! ! structure silicon epitaxial planar transistor ! ! ! ! equivalent circuits tr2 tr1 (1) (2) (3) (4) (5) (6) ! ! ! ! packaging specifications UMF9N umt6 f9 tr 3000 type package marking code basic ordering unit (pieces) ! ! ! ! external dimensions (units : mm) rohm : umt6 eiaj : sc-88 0 ~ 0.1 ( 6 ) 2.0 1.3 0.9 0.15 0.7 0.1min. 2.1 0.65 0.2 1.25 ( 1 ) 0.65 ( 4 ) ( 3 ) ( 2 ) ( 5 ) each lead has same dimensions
UMF9N transistors 2/5 ! ! ! ! absolute maximum ratings (ta=25 c) tr1 parameter symbol v cbo v ceo v ebo i c i cp p c tj tstg limits 15 12 6 500 150(total) 150 ? 55~ + 150 1.0 ? 1 ? 2 unit v v v ma a mw c c collector-base voltage collector-emitter voltage emitter-base voltage collector current power dissipation junction temperature range of storage temperature ? 1 single pulse p w =1ms ? 2 120mw per element must not be exceeded. each terminal mounted on a recommended land. tr2 parameter ? 1 p w 10ms duty cycle 50% ? 2 120mw per element must not be exceeded. each terminal mounted on a recommended land. symbol v dss v gss i d i drp p d tch tstg limits 30 20 100 200 150(total) 150 ? 55~ + 150 ? 1 ? 1 ? 2 unit v v ma i dp 200 ma ma i dr 100 ma mw c c drain-source voltage gate-source voltage drain current reverse drain current total power dissipation channel temperature range of storage temperature continuous continuous pulsed pulsed ! ! ! ! electrical characteristics (ta=25 c) tr1 parameter symbol min. typ. max. unit conditions v cb = 10v, i e = 0ma, f = 1mhz transition frequency f t ? 320 ? mhz v ce = 2v, i e =? 10ma, f = 100mhz bv ceo 12 ?? v i c = 1ma collector-emitter breakdown voltage bv cbo 15 ?? v i c = 10 a collector-base breakdown voltage bv ebo 6 ?? v i e = 10 a emitter-base breakdown voltage i cbo ?? 100 na v cb = 15v collector cut-off current i ebo ?? 100 na v eb = 6v emitter cut-off current v ce(sat) ? 100 250 mv i c = 200ma, i b = 10ma collector-emitter saturation voltage h fe 270 ? 680 ? v ce = 2v, i c = 10ma dc current gain cob ? 7.5 ? pf collector output capacitance tr2 parameter symbol min. typ. max. unit conditions input capacitance c iss ? 13 ? pf v ds = 5v, v gs = 0v, f = 1mhz i gss ?? 1 a v gs = 20v, v ds = 0v gate-source leakage v (br)dss 30 ?? v i d = 10 a, v gs = 0v i dss ?? 1.0 a v ds = 30v, v gs = 0v zero gate voltage drain current drain-source breakdown voltage v gs(th) 0.8 ? 1.5 vv ds = 3v, i d = 100 a gate-threshold voltage r ds(on) ? 58 ? i d = 10ma, v gs = 4v ? 713 ? i d = 1ma, v gs = 2.5v static drain-source on-state resistance c oss ? 9 ? pf output capacitance |y fs | 20 ?? ms v ds = 3v, i d = 10ma forward transfer admittance c rss ? 4 ? pf reverce transfer capacitance rise time t r ? 35 ? ns t d(off) ? 80 ? ns turn-off delay time t d(on) ? 15 ? ns i d = 10ma, v dd 5v, v gs = 5v, r l = 500 ? , r gs = 10 ? turn-on delay time t f ? 80 ? ns fall time
UMF9N transistors 3/5 ! ! ! ! electrical characteristic curves tr1 fig.1 grounded emitter propagation characteristics 0 1 100 1000 10 base to emitter voltage : v be (v) collector current : i c (ma) 1.4 1.0 1.2 0.4 0.6 0.8 0.2 v ce =2v pulsed ta=125 c ta=25 c ta= ? 40 c 1 10 100 1000 collector current : i c (ma) fig.2 dc current gain vs. collector current 1 dc current gain : h fe 10 1000 100 ta = 125 c ta =? 40 c ta = 25 c v ce = 2v pulsed fig.3 collector-emitter saturation voltage vs. collector current ( ) 1 10 100 1000 collector current : i c (ma) 1 collector saturation voltage : v ce(sat) (mv) 10 1000 100 ta=25 c pulsed i c /i b = 50 i c /i b = 20 i c /i b = 10 fig.4 collector-emitter saturation voltage vs. collector current ( ? ) 1 10 100 1000 collector current : i c (ma) 1 collector saturation voltage : v ce (sat) (v) 10 1000 100 ta= 1 25 c 25 c ? 40 c i c /i b = 20 pulsed 1 10 100 1000 collector current : i c (ma) fig.5 base-emitter saturation voltage vs. collector current 10 baser saturation voltage : v be (sat) (mv) 100 10000 1000 ta = 25 c ta =? 40 c ta = 125 c i c /i b = 20 pulsed fig.6 gain bandwidth product vs. emitter current 1 10 100 1000 emitter current : i e (ma) 1 transition frequency : f t (mhz) 10 1000 100 v ce = 2v ta = 25 c pulsed fig.7 collector output capacitance vs. collector-base voltage emitter input capacitance vs. emitter-base voltage 1 10 100 0.1 1 10 100 1000 ta = 25 c f = 1mhz i e = 0a collector output capacitance : cob (pf) emitter input capacitance : cib (pf) emitter to base voltage : v eb ( v) cib cob 0.01 0.1 1 10 100 emitter current : v ce (v) fig.8 safe operation area 0.001 transition frequency : i c (a) 0.01 10 0.1 1 ta = 25 c single pulsed dc 100ms 10ms 1ms
UMF9N transistors 4/5 tr2 04 0.1m 100m drain current : i d (a) gate-source voltage : v gs (v) 1 10m 3 2 1m 0.2m 0.5m 2m 5m 50m 20m 200m ta = 125 c 75 c 25 c ? 25 c v ds = 3v pulsed fig.9 typical transfer characteristics ? 50 0 0 1 1.5 2 gate threshold voltage : v gs(th) (v) channel temperature : tch ( c) 0.5 ? 25 25 50 75 100 125 150 fig.10 gate threshold voltage vs. channel temperature v ds = 3v i d = 0.1ma pulsed 0.001 1 2 50 static drain-source on-state resistance : r ds(on) ( ? ) drain current : i d (a) 0.5 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 5 10 20 fig.11 static drain-source on-state resistance vs. drain current ( ) ta = 125 c 75 c 25 c ? 25 c v gs = 4v pulsed 0.001 1 2 50 static drain-source on-state resistance : r ds(on) ( ? ) drain current : i d (a) 0.5 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 5 10 20 fig.12 static drain-source on-state resistance vs. drain current ( ? ) ta = 125 c 75 c 25 c ? 25 c v gs = 2.5v pulsed 0 5 10 15 20 0 5 10 15 gate-source voltage : v gs (v) i d = 0.1a static drain-source on-state resistance : r ds(on) ( ? ) fig.13 static drain-source on-state resistance vs. gate-source voltage ta = 25 c pulsed i d = 0.05a ? 50 0 25 150 0 3 6 9 channel temperature : tch ( c) static drain-source on-state resistance : r ds(on) ( ? ) ? 25 50 75 100 125 2 1 4 5 7 8 fig.14 static drain-source on-state resistance vs. channel temperature v gs = 4v pulsed i d = 100ma i d = 50ma 0.0001 0.001 0.01 0.02 0.5 forward transfer admittance : |yfs| (s) drain current : i d (a) 0.005 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.05 0.1 0.2 0.1 0.2 0.5 0.002 ta =? 25 c 25 c 75 c 125 c v ds = 3v pulsed fig.15 forward transfer admittance vs. drain current 200m reverse drain current : i dr (a) source-drain voltage : v sd (v) 1.5 1 0.5 0 100m 50m 20m 10m 5m 2m 1m 0.5m 0.2m 0.1m fig.16 reverse drain current vs. source-drain voltage ( ) v gs = 0v pulsed ta = 125 c 75 c 25 c ? 25 c 200m reverse drain current : i dr (a) source-drain voltage : v sd (v) 1.5 1 0.5 0 100m 50m 20m 10m 5m 2m 1m 0.5m 0.2m 0.1m fig.17 reverse drain current vs. source-drain voltage ( ? ) ta = 25 c pulsed v gs = 4v 0v
UMF9N transistors 5/5 0.1 1 2 50 capacitance : c (pf) drain-source voltage : v ds (v) 0.5 0.2 0.5 1 2 5 10 20 50 5 10 20 fig.18 typical capacitance vs. drain-source voltage c iss c oss c rss ta = 25 c f = 1mh z v gs = 0v 0.1 10 20 500 swithing time : t (ns) drain current : i d (ma) 5 0.2 0.5 1 2 5 10 20 50 50 100 200 1000 2 100 ta = 25 c v dd = 5v v gs = 5v r g = 10 ? pulsed t d(off) t r t d(on) t f fig.19 switching characteristics


▲Up To Search▲   

 
Price & Availability of UMF9N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X